Correlation Engine 2.0
Clear Search sequence regions


  • cdc2 protein (2)
  • CDK1 (2)
  • cell cycle (2)
  • GM130 (6)
  • impairs (1)
  • impedes (1)
  • importin α (5)
  • importin α (2)
  • importin α1 (1)
  • KPNA2 (1)
  • Ltd (1)
  • mitosis (1)
  • regulates (1)
  • TPX2 (8)
  • Sizes of these terms reflect their relevance to your search.

    Spindle orientation is important in multiple developmental processes as it determines cell fate and function. The orientation of the spindle depends on the assembly of a proper astral microtubule network. Here, we report that the spindle assembly factor TPX2 regulates astral microtubules. TPX2 in the spindle pole area is activated by GM130 (GOLGA2) on Golgi membranes to promote astral microtubule growth. GM130 relieves TPX2 inhibition by competing for importin α1 (KPNA2) binding. Mitotic phosphorylation of importin α at serine 62 (S62) by CDK1 switches its substrate preference from TPX2 to GM130, thereby enabling competition-based activation. Importin α S62A mutation impedes local TPX2 activation and compromises astral microtubule formation, ultimately resulting in misoriented spindles. Blocking the GM130-importin α-TPX2 pathway impairs astral microtubule growth. Our results reveal a novel role for TPX2 in the organization of astral microtubules. Furthermore, we show that the substrate preference of the important mitotic modulator importin α is regulated by CDK1-mediated phosphorylation. © 2021. Published by The Company of Biologists Ltd.

    Citation

    Haijing Guo, Jen-Hsuan Wei, Yijun Zhang, Joachim Seemann. Importin α phosphorylation promotes TPX2 activation by GM130 to control astral microtubules and spindle orientation. Journal of cell science. 2021 Feb 19;134(4)

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 33526712

    View Full Text