Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

In order to gain insight into the regulation of vascular tone by mitochondria, the effects of mitochondrial complex III inhibitors on contractile responses in porcine isolated coronary arteries were investigated. Segments of porcine coronary arteries were set up for isometric tension recording and concentration response curves to contractile agents were carried out in the absence or presence of the complex III inhibitors antimycin A or myxothiazol. Activity of AMP kinase was determined by measuring changes in phosphorylation of AMP kinase at Thr172. Pre-incubation with 10 μM antimycin A (Qi site inhibitor), or myxothiazol (Qo site inhibitor) led to inhibition of the contraction to the thromboxane receptor agonist U46619. Similar effects were seen on contractile responses to extracellular calcium, and the L-type calcium channel opener BAY K 8644, suggesting that both antimycin A and myxothiazol inhibit calcium-dependent contractions. The inhibitory effect of antimycin A was still seen in the absence of extracellular calcium, indicating an additional effect on a calcium independent pathway. The AMP kinase inhibitor dorsomorphin (10 μM) prevented the inhibitory of antimycin A but not myxothiazol. Furthermore, antimycin A increased the phosphorylation of AMP kinase, indicating an increase in activity, suggesting that antimycin A also acts through this pathway. These data indicate that inhibition of complex III attenuates contractile responses through inhibition of calcium influx. However, inhibition of the Qi site can also inhibit the contractile response through activation of AMP kinase. Copyright © 2021 Elsevier B.V. All rights reserved.


Mohammed Saarti, Hani Almukhtar, Paul A Smith, Richard E Roberts. Effect of mitochondrial complex III inhibitors on the regulation of vascular tone in porcine coronary artery. European journal of pharmacology. 2021 Apr 05;896:173917

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 33529727

View Full Text