Correlation Engine 2.0
Clear Search sequence regions


  • apo (1)
  • circular dichroism (6)
  • heme (14)
  • heme protein (3)
  • hemoglobin (1)
  • hemolysis (1)
  • hplc (1)
  • HPX (18)
  • human (2)
  • human cell (1)
  • hydrogen (2)
  • lipid increases (1)
  • methemalbumin (2)
  • myoglobin (1)
  • nitric oxide (2)
  • plasma (7)
  • Sizes of these terms reflect their relevance to your search.

    Plasma hemopexin (HPX) is the key antioxidant protein of the endogenous clearance pathway that limits the deleterious effects of heme released from hemoglobin and myoglobin (the term "heme" is used in this article to denote both the ferrous and ferric forms). During intra-vascular hemolysis, heme partitioning to protein and lipid increases as the plasma concentration of HPX declines. Therefore, the development of HPX as a replacement therapy during high heme stress could be a relevant intervention for hemolytic disorders. A logical approach to enhance HPX yield involves recombinant production strategies from human cell lines. The present study focuses on a biophysical assessment of heme binding to recombinant human HPX (rhHPX) produced in the Expi293FTM (HEK293) cell system. In this report, we examine rhHPX in comparison with plasma HPX using a systematic analysis of protein structural and functional characteristics related to heme binding. Analysis of rhHPX by UV/Vis absorption spectroscopy, circular dichroism (CD), size-exclusion chromatography (SEC)-HPLC, and catalase-like activity demonstrated a similarity to HPX fractionated from plasma. In particular, the titration of HPX apo-protein(s) with heme was performed for the first time using a wide range of heme concentrations to model HPX-heme interactions to approximate physiological conditions (from extremely low to more than two-fold heme molar excess over the protein). The CD titration data showed an induced bisignate CD Soret band pattern typical for plasma and rhHPX versions at low heme-to-protein molar ratios and demonstrated that further titration is dependent on the amount of protein-bound heme to the extent that the arising opposite CD couplet results in a complete inversion of the observed CD pattern. The data generated in this study suggest more than one binding site in both plasma and rhHPX. Furthermore, our study provides a useful analytical platform for the detailed characterization of HPX-heme interactions and potentially novel HPX fusion constructs.

    Citation

    Elena Karnaukhova, Catherine Owczarek, Peter Schmidt, Dominik J Schaer, Paul W Buehler. Human Plasma and Recombinant Hemopexins: Heme Binding Revisited. International journal of molecular sciences. 2021 Jan 26;22(3)

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 33530421

    View Full Text