Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The nuclear-cytoplasmic transport of biomolecules is assisted by the nuclear pores composed of evolutionarily conserved proteins termed nucleoporins (Nups). The central Nups, characterized by multiple FG-repeats, are highly dynamic and contain a high level of intrinsically disordered regions (IDPRs). FG-Nups bind several protein partners and play critical roles in molecular interactions and the regulation of cellular functions through their IDPRs. In the present study, we performed a multiparametric bioinformatics analysis to characterize the prevalence and functionality of IDPRs in human FG-Nups. These analyses revealed that the sequence of all FG-Nups contained >50% IDPRs (except Nup54 and Nup358). Nup98, Nup153, and POM121 were extremely disordered with ~80% IDPRs. The functional disorder-based binding regions in the FG-Nups were identified. The phase separation behavior of FG-Nups indicated that all FG-Nups have the potential to undergo liquid-to-liquid phase separation that could stabilize their liquid state. The inherent structural flexibility in FG-Nups is mechanistically and functionally advantageous. Since certain FG-Nups interact with disease-relevant protein aggregates, their complexes can be exploited for drug design. Furthermore, consideration of the FG-Nups from the intrinsic disorder perspective provides critical information that can guide future experimental studies to uncover novel pathways associated with diseases linked with protein misfolding and aggregation. Copyright © 2021 Elsevier B.V. All rights reserved.

Citation

Denzelle Lee Lyngdoh, Niharika Nag, Vladimir N Uversky, Timir Tripathi. Prevalence and functionality of intrinsic disorder in human FG-nucleoporins. International journal of biological macromolecules. 2021 Apr 01;175:156-170

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33548309

View Full Text