Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Zinc finger-homeodomain (ZF-HD) proteins encode a family of plant-specific transcription factors that play essential roles in regulating plant growth and development as well as responses to abiotic/biotic stresses by activating or repressing the target genes. In this study, genome-wide characterization and expression profiling of the ZF-HD gene family in cucumber (Cucumis sativus) were performed for the first time. By using bioinformatics approaches, a total of 13 ZF-HD genes (designated as CsMIF1-CsMIF3 and CsZHD1-CsZHD10) were identified in the cucumber genome, which were unevenly distributed on six chromosomes. According to the phylogenetic analysis of cucumber and other species, they were divided into two distinct families, MINI ZINC FINGER (MIF) and zinc finger-homeodomain (ZHD), and the ZHD family was further divided into six subfamilies (ZHDI-ZHDVI). CsZF-HD members were mostly conserved in each subfamily with minor variations in motif distribution, and gene structure analysis showed that the CsZF-HD genes had only one intron or no intron at all. Expression analysis showed that most CsZF-HD genes had tissue-specific expression patterns, and some of them exhibited highly variable expression during fruit development. qRT-PCR results indicated that the selected CsZF-HD genes were responsive to drought stress, and some of them were differentially expressed in response to the inoculation of powdery mildew (PM) and downy mildew (DM) based on publicly available RNA-seq data. The results lay the foundation for further functional analysis of the ZF-HD genes and explore their potential application to the improvement of stress tolerance in cucumber.

Citation

Wei Lai, Chuxia Zhu, Zhaoyang Hu, Shiqiang Liu, Hao Wu, Yong Zhou. Identification and Transcriptional Analysis of Zinc Finger-Homeodomain (ZF-HD) Family Genes in Cucumber. Biochemical genetics. 2021 Aug;59(4):884-901

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33554320

View Full Text