Correlation Engine 2.0
Clear Search sequence regions


  • blood (9)
  • blue (1)
  • diagnosis (1)
  • follow up studies (1)
  • human (4)
  • plasma (1)
  • thymol blue (1)
  • TnI (7)
  • troponin (1)
  • volunteers (1)
  • Sizes of these terms reflect their relevance to your search.

    This work introduces the procedure of using non-immunoassay distance-based paper analytical devices (dPADs) to accurately measure any traces of the cardiac troponin I (TnI) in whole blood samples without the use of any external blood separation. This enables a rapid clinical diagnosis and the subsequent follow-up in regard to identifying acute myocardial infarction. These dPADs are designed and constructed to accommodate three parts: (1) a blood separation zone that is immobilized with a hemostatic agent, this no longer requires a blood separation membrane for the isolation of the plasma from the blood element, (2) a pretreatment zone, and (3) a detection zone coated with thymol blue. The quantitative TnI level in the whole blood was determined by measuring the blue color length found in the detection zone, which is proportional to the concentration, owing to the dry protein binding principle. Correspondingly, a mere single drop of human whole blood performs adequately within our proposed method. This reduces both the size of the collection process and the sample volumes needed in the respective medical fields. As we cover all of the optimization studies, our dPADs provide an evaluation of the linearity range from 0.025 to 2.5 ng/mL (R2 = 0.9989) of TnI, with a detection limit as low as 0.025 ng/mL by use of an observation just using the naked eye. To validate the clinical utilities of our proposed method, our dPADs were then applied for the detection of TnI in humans using the whole blood sample of 15 volunteers. A great amount of accuracy was required in this assay because there was no significant difference between both methods, with the confidence level being as high as 95%. This technique also showed that the recoveries ranged from 99.40 to 104.27%, with the highest relative standard deviation being at 3.77%. Thus, our proposed dPADs offer more benefits for a rapid TnI determination.

    Citation

    Kawin Khachornsakkul, Wijitar Dungchai. Rapid Distance-Based Cardiac Troponin Quantification Using Paper Analytical Devices for the Screening and the Follow-Up of Acute Myocardial Infarction, Using a Single Drop of Human Whole Blood. ACS sensors. 2021 Mar 26;6(3):1339-1347

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 33555179

    View Full Text