Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Homologous recombination is a key pathway found in nearly all bacterial taxa. The recombination complex not only allows bacteria to repair DNA double-strand breaks but also promotes adaption through the exchange of DNA between cells. In Proteobacteria, this process is mediated by the RecBCD complex, which relies on the recognition of a DNA motif named Chi to initiate recombination. The Chi motif has been characterized in Escherichia coli and analogous sequences have been found in several other species from diverse families, suggesting that this mode of action is widespread across bacteria. However, the sequences of Chi-like motifs are known for only five bacterial species: E. coli, Haemophilus influenzae, Bacillus subtilis, Lactococcus lactis, and Staphylococcus aureus. In this study, we detected putative Chi motifs in a large dataset of Proteobacteria and identified four additional motifs sharing high sequence similarity and similar properties to the Chi motif of E. coli in 85 species of Proteobacteria. Most Chi motifs were detected in Enterobacteriaceae and this motif appears well conserved in this family. However, we did not detect Chi motifs for the majority of Proteobacteria, suggesting that different motifs are used in these species. Altogether these results substantially expand our knowledge on the evolution of Chi motifs and on the recombination process in bacteria. © The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America.

Citation

Angélique Buton, Louis-Marie Bobay. Evolution of Chi motifs in Proteobacteria. G3 (Bethesda, Md.). 2021 Jan 18;11(1)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33561247

View Full Text