Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Dysfunction of genes that control mitosis and are responsible for the correct segregation of sister chromatids in anaphase is often accompanied by aneuploidy, which is frequently detected in leukemia. One of the components of the kinetochore complex, namely, the AF15q14/KNL1/CASC5 protein, is an important factor ensuring the correct binding of the pericentromeric region of chromosomes with the spindle microtubules. As shown recently, in some leukemias, the gene of this protein can be involved in the generation of the chromosomal translocation t(11;15)(q23;q14) or a variant of the chimeric MLL-AF15Q14 oncogene, which serves as a biomarker of poor prognosis. Despite the implication of mRNA of the CASC5 gene in oncogenesis of solid tumors, expression of this gene in hematopoietic neoplasms has not been studied. We analyzed expression levels of the CASC5 gene and the nearest regulatory genes, including WT1, APOBEC3A (A3A), and N-MYC. A pronounced decrease in CASC5 expression in bone marrow cells of primary leukemia patients compared with healthy donors was found. It was also shown that reduced expression of the CASC5 gene correlates with the detection of targeted mutations in patients composed two prognostic subgroups (favorable, unfavorable) with a significance level (p <0.05). It was noted that the change in the expression level of the CASC5 gene in acute myeloid leukemia is associated with overexpression of the genes WT1, A3A, and in some cases N-MYC and SPT16, which is consistent with the resistance to chemotherapy and leukemia progression. However, the question of which regulatory gene initiates leukemogenesis remains open.

Citation

K V Bogdanov, O V Merzlikina, Y V Mirolyubova, L L Girshova, E G Lomaia, A Y Zaritskey. CASC5</I> Gene Expression Changes Correlate with Targeted Mutations in Leukemia]. Molekuliarnaia biologiia. 2021 Jan-Feb;55(1):139-151

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33566033

View Full Text