Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Phosphorothioate-modified antisense oligonucleotide (PS-ASO) drugs are commonly used to modulate gene expression through RNase H1-mediated cleavage of target RNAs. Upon internalization through endocytic pathways into cells, PS-ASOs must be released from membraned endosomal organelles to act on target RNAs, a limiting step of PS-ASO activity. Here we report that Hsc70 protein mediates productive release of PS-ASOs from endosomes. Hsc70 protein was enriched in endosome fractions shortly after PS-ASO incubation with cells. Reduction of Hsc70 significantly decreased the activities of PS-ASOs in reducing target RNAs. PS-ASO uptake and transport from early endosomes to late endosomes (LEs) were not affected upon Hsc70 reduction; however, endosomal release of PS-ASOs was impaired. Reduction of Hsc70 led to more scattered mannose-6-phosphate receptor (M6PR) localization at LEs in the cytoplasm, in contrast to the perinuclear localization at trans-Golgi network (TGN) in control cells, suggesting that retrograde transport of M6PR from LEs to TGN was affected. Consistently, reduction of Hsc70 increased colocalization of M6PR and PS-ASOs at LEs, and also delayed M6PR antibody transport from LE to TGN. Together, these results suggest that Hsc70 protein is involved in M6PR vesicle escape from LEs and may thus enhance PS-ASO release from LEs.

Citation

Xue-Hai Liang, Joshua G Nichols, Chih-Wei Hsu, Stanley T Crooke. Hsc70 Facilitates Mannose-6-Phosphate Receptor-Mediated Intracellular Trafficking and Enhances Endosomal Release of Phosphorothioate-Modified Antisense Oligonucleotides. Nucleic acid therapeutics. 2021 Aug;31(4):284-297

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33567234

View Full Text