Correlation Engine 2.0
Clear Search sequence regions


  • adult (3)
  • aflatoxin (1)
  • alleles (1)
  • amyloid (1)
  • amyloidosis (1)
  • amyloidosis liver (1)
  • antigens (2)
  • appear (19)
  • attack (1)
  • avian (2)
  • avian leukosis virus (2)
  • avihepadnaviruses (1)
  • axin2 (2)
  • b virus (102)
  • bile duct (1)
  • birds (1)
  • birth (5)
  • breaks dna (1)
  • C myc (3)
  • c myc gene (1)
  • carbon (1)
  • carcinogen (2)
  • carcinogens (2)
  • case (11)
  • CCNA2 (2)
  • CCNE1 (1)
  • cell cycle (1)
  • cells growth (1)
  • cellular (3)
  • chickens (2)
  • childhood (2)
  • children (1)
  • chimpanzees (6)
  • chronic liver diseases (1)
  • circular dna (10)
  • clones cells (1)
  • computer model (1)
  • cytoplasm (1)
  • death rate (16)
  • diploid (1)
  • dna damage (6)
  • dna left hand (2)
  • dna markers (1)
  • dna repair (1)
  • dna sequences (4)
  • duck (8)
  • element (1)
  • enzymes (1)
  • essential (1)
  • estrogen receptor (1)
  • factor (2)
  • fall (1)
  • flow vein (2)
  • focus (3)
  • form dna (1)
  • function (1)
  • genes (3)
  • genomes (3)
  • ground (11)
  • hbeag (8)
  • hepadnaviruses (7)
  • hepatocellular carcinoma (66)
  • homeostasis (16)
  • host cell (1)
  • human (23)
  • hybrid (3)
  • increases size (1)
  • infect (1)
  • injuries (1)
  • intron (1)
  • layer (1)
  • levels enzymes (1)
  • liver (46)
  • liver disease (3)
  • liver function (1)
  • liver mass (3)
  • liver size (4)
  • mammals (2)
  • mice (9)
  • MLL4 (1)
  • mothers (1)
  • mrna (2)
  • myc (7)
  • myc gene (1)
  • N myc (2)
  • neoplasia (2)
  • newborns (1)
  • nodules (1)
  • normal liver (13)
  • normal liver enzymes (1)
  • nuclear antigen (1)
  • nuclear import (1)
  • oncogenesis (1)
  • patients (16)
  • pcna (8)
  • period (2)
  • phase (9)
  • phenotypes (1)
  • polyploid (1)
  • pre mrnas (1)
  • problem (4)
  • process (4)
  • proteins c (1)
  • provirus (1)
  • rapid (1)
  • reason (2)
  • reticulum (2)
  • retrovirus (1)
  • risk factor (10)
  • rna (2)
  • rna primer (1)
  • rodent (1)
  • secondary liver (1)
  • serum (1)
  • sexual (1)
  • signals (1)
  • smc5 (5)
  • southern blot (1)
  • Sox9 (1)
  • squirrels (8)
  • strains (1)
  • suggest (6)
  • tamoxifen (6)
  • TERT (29)
  • too (2)
  • toxic (2)
  • transform (1)
  • tyrosinemia (1)
  • understand (1)
  • viral dna (5)
  • viral proteins (4)
  • viral rna (1)
  • viremia (1)
  • virion (3)
  • virus- dna (2)
  • woodchuck (47)
  • Sizes of these terms reflect their relevance to your search.

    Human hepatitis B virus (HBV) can cause chronic, lifelong infection of the liver that may lead to persistent or episodic immune-mediated inflammation against virus-infected hepatocytes. This immune response results in elevated rates of killing of virus-infected hepatocytes, which may extend over many years or decades, lead to fibrosis and cirrhosis, and play a role in the high incidence of hepatocellular carcinoma (HCC) in HBV carriers. Immune-mediated inflammation appears to cause oxidative DNA damage to hepatocytes, which may also play a major role in hepatocarcinogenesis. An additional DNA damaging feature of chronic infections is random integration of HBV DNA into the chromosomal DNA of hepatocytes. While HBV DNA integration does not have a role in virus replication it may alter gene expression of the host cell. Indeed, most HCCs that arise in HBV carriers contain integrated HBV DNA and, in many, the integrant appears to have played a role in hepatocarcinogenesis. Clonal expansion of hepatocytes, which is a natural feature of liver biology, occurs because the hepatocyte population is self-renewing and therefore loses complexity due to random hepatocyte death and replacement by proliferation of surviving hepatocytes. This process may also represent a risk factor for the development of HCC. Interestingly, during chronic HBV infection, hepatocyte clones detected using integrated HBV DNA as lineage-specific markers, emerge that are larger than those expected to occur by random death and proliferation of hepatocytes. The emergence of these larger hepatocyte clones may reflect a survival advantage that could be explained by an ability to avoid the host immune response. While most of these larger hepatocyte clones are probably not preneoplastic, some may have already acquired preneoplastic changes. Thus, chronic inflammation in the HBV-infected liver may be responsible, at least in part, for both initiation of HCC via oxidative DNA damage and promotion of HCC via stimulation of hepatocyte proliferation through immune-mediated killing and compensatory division.

    Citation

    William S Mason, Allison R Jilbert, Samuel Litwin. Hepatitis B Virus DNA Integration and Clonal Expansion of Hepatocytes in the Chronically Infected Liver. Viruses. 2021 Jan 30;13(2)

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 33573130

    View Full Text