Correlation Engine 2.0
Clear Search sequence regions


  • cellular (1)
  • filament (2)
  • sutures (2)
  • Sizes of these terms reflect their relevance to your search.

    We present results to show that a commercially available polypropylene suture filament (Ethicon Prolene), following annealing and tensile creep can, after creep load removal, release viscoelastically stored energy over a period of several weeks. Specifically, over 0.1-1000 h, the suture undergoes a time-dependent contraction of ~4% and, following a short recovery time (~3 min) to a fixed strain, produces a progressively increasing recovery force of ~0.1-1 N. We suggest that this time-dependent energy release may facilitate wound healing by the action of viscoelastically induced mechanotransduction (VIM). Moreover, our recent (published) findings have led to evidence of reduced hydrophobicity from viscoelastically recovering polymeric filaments and speculation that this may emanate from the long-term release of electric charges. Thus, we propose that the latter may enhance the VIM mechanism. In this paper, we report on the direct detection of these charges and the first findings from an investigation involving the presence of cell cultures on Prolene samples that are (i) viscoelastically recovering, (ii) annealed only and (iii) in as-received condition. From (i), the results demonstrate a significant increase in cell motility, with migration towards the suture, compared to (ii) and (iii). This suggests greater stimulation of the wound healing process, an effect which is expected to continue for the duration of the viscoelastic recovery period. Copyright © 2020 Elsevier B.V. All rights reserved.

    Citation

    Louise A France, Kevin S Fancey. Viscoelastically active sutures - A stitch in time? Materials science & engineering. C, Materials for biological applications. 2021 Feb;121:111695

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 33579505

    View Full Text