Correlation Engine 2.0
Clear Search sequence regions


  • acid phytic (2)
  • bile (1)
  • blood (2)
  • brazil (1)
  • calcium (1)
  • cases (5)
  • cell numbers (2)
  • children (4)
  • cytokines (1)
  • data analysis (3)
  • diagnosis (1)
  • dye (2)
  • edta (1)
  • ethics committee (1)
  • fats (1)
  • feces blood (1)
  • gold (1)
  • heparin (1)
  • human (2)
  • human cells (1)
  • human milk (2)
  • humic acid (1)
  • hypoxia (1)
  • ill (2)
  • immunoglobulin g (1)
  • iowa (1)
  • limit (4)
  • mortality (2)
  • mother (1)
  • mrna (1)
  • nose (1)
  • nucleic acid (1)
  • nucleocapsid (1)
  • obesity protein (1)
  • patients (15)
  • pcr (18)
  • placenta (2)
  • reagents (1)
  • risk factors (2)
  • rna (14)
  • rt pcr (1)
  • samples clear (1)
  • samples study (1)
  • sars cov (24)
  • serum (2)
  • signal (1)
  • specimen types (2)
  • sputum (2)
  • student (1)
  • therapies (1)
  • throat (2)
  • viral load (38)
  • viral rna (14)
  • yellow fever (1)
  • Sizes of these terms reflect their relevance to your search.

    Knowledge of viral load is essential to formulate strategies for antiviral treatment, vaccination, and epidemiological control of COVID-19. Moreover, identification of patients with high viral loads can also be useful to understand risk factors such as age, comorbidities, severity of symptoms and hypoxia, to decide on the need for hospitalization. Several ongoing studies are analyzing viral load in different types of samples and evaluating its relationship with clinical outcomes and viral transmission pathways. However, in a great number of emerging studies, cycle threshold (Ct) values alone are often used as viral load indicators, which may be a mistake. In this study, we compared tracheal aspirate with nasopharyngeal swab samples obtained from critically ill COVID-19 patients and here we report how the raw Ct can lead to misinterpretation of results. Furthermore, based on analysis of nasopharyngeal swab samples we propose a method to reduce evaluation errors that could occur from using raw Ct data. Based on these findings, we show the impact that normalization of Ct values has on interpretation of SARS-CoV-2 viral load from different biological samples. Copyright © 2021 Elsevier B.V. All rights reserved.

    Citation

    Renan Lyra Miranda, Alexandro Guterres, Carlos Henrique de Azeredo Lima, Paulo Niemeyer Filho, Mônica R Gadelha. Misinterpretation of viral load in COVID-19 clinical outcomes. Virus research. 2021 Feb 13;296:198340

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 33592214

    View Full Text