Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Endocytosis is a critical mechanism providing not only internalization of biomacromolecular structures but also communication with the environment where cells reside. Due to being the first step at the interaction interface, the route of cellular uptake has a major role governing the intracellular destinations and behaviors of molecular and non-molecular species including nanoparticles. To this end, various methods employing variety of techniques are investigated. In this study, surface-enhanced Raman spectroscopy (SERS) based approach for the investigation of endocytosis of gold nanoparticles (AuNPs) is reported. Internalization pathways of AuNPs were examined by flow cytometry via specific inhibitors for each endocytosis pathway type using three model cell lines Beas-2b, A549 and PNT1A. Macropinocytosis was blocked by cytochalasin D (CytoD), clathrin mediated endocytosis (CME) by sucrose (Scr), and caveolae mediated endocytosis (CE) by filipin (Fil). The results showed that cell type dependent AuNPs internalization affects not only the response of the cells to the inhibitors but also the obtained SERS spectra. SERS spectra of PNT1A cells treated with inhibitors was influenced most. The inhibition of each endocytosis pathway significantly affected the SERS spectral pattern and the spectral changes in different endocytosis pathways were clearly discriminated from each other. This means that SERS can significantly contribute to the investigation of different endosomal pathways from single living cells without any disruption of the cells or labeling. Copyright © 2020 Elsevier B.V. All rights reserved.

Citation

Deniz Yılmaz, Mustafa Culha. Investigation of the pathway dependent endocytosis of gold nanoparticles by surface-enhanced Raman scattering. Talanta. 2021 Apr 01;225:122071

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33592789

View Full Text