Correlation Engine 2.0
Clear Search sequence regions


filter terms:
  • sham (5)
  • Sizes of these terms reflect their relevance to your search.

    Accurately describing excited states within Kohn-Sham (KS) density functional theory (DFT), particularly those which induce ionization and charge transfer, remains a great challenge. Common exchange-correlation (xc) approximations are unreliable for excited states owing, in part, to the absence of a derivative discontinuity in the xc energy (Δ), which relates a many-electron energy difference to the corresponding KS energy difference. We demonstrate, analytically and numerically, how the relationship between KS and many-electron energies leads to the step structures observed in the exact xc potential in four scenarios: electron addition, molecular dissociation, excitation of a finite system, and charge transfer. We further show that steps in the potential can be obtained also with common xc approximations, as simple as the LDA, when addressed from the ensemble perspective. The article therefore highlights how capturing the relationship between KS and many-electron energies with advanced xc approximations is crucial for accurately calculating excitations, as well as the ground-state density and energy of systems which consist of distinct subsystems.

    Citation

    Eli Kraisler, M J P Hodgson, E K U Gross. From Kohn-Sham to Many-Electron Energies via Step Structures in the Exchange-Correlation Potential. Journal of chemical theory and computation. 2021 Mar 09;17(3):1390-1407


    PMID: 33595312

    View Full Text