Correlation Engine 2.0
Clear Search sequence regions


  • amino acid sequence (2)
  • brain (1)
  • c57bl mice (1)
  • cell death (1)
  • CX3CL1 (11)
  • CX3CR1 (1)
  • IL 1β (1)
  • mice (1)
  • microglia (5)
  • neuron (4)
  • PSD- 93 (10)
  • receptor (1)
  • stroke (3)
  • TNF α (1)
  • Sizes of these terms reflect their relevance to your search.

    Post-synaptic density 93 (PSD-93) mediates glutamate excitotoxicity induced by ischemic brain injury, which then induces microglial inflammatory response. However, the underlying mechanisms of how PSD-93 mediates the crosstalk between neurons and microglia in the post-synaptic dense region remain elusive. CX3 chemokine ligand 1 (CX3CL1) is a chemokine specifically expressed in neurons while its receptor CX3CR1 is highly expressed in microglia. In this study, we examined the interaction of PSD-93 and CX3CL1 in the crosstalk between neurons and microglia in acute ischemic stroke. We utilized male C57BL/6 mice to establish the middle cerebral artery occlusion model (MCAO) and designed a fusion small peptide Tat-CX3CL1 (357-395aa) to inhibit PSD-93 and CX3CL1 interaction. The combination peaks of PSD-93 and CX3CL1 at 6 hr after I/R were observed. The binding sites were located at the 420-535 amino acid sequence of PSD-93 and 357-395 amino acid sequence of CX3CL1. Tat-CX3CL1 (357-395aa) could inhibit the interaction of PSD-93 and CX3CL1 and inhibited the pro-inflammatory cytokine IL-1β and TNF-α expression and provided neuroprotection following reperfusion. Together, these data suggest that PSD-93 binds CX3CL1 to activate microglia and initiate neuroinflammation. Specific blockade of PSD-93-CX3CL1 interaction reduces I/R induced neuronal cell death, and provides a new therapeutic target for ischemic stroke. © 2021 International Society for Neurochemistry.

    Citation

    Qingxiu Zhang, Lei He, Mo Chen, Hui Yang, Xiaowei Cao, Xiaomei Liu, Qi Hao, Zhengwei Chen, Tengfei Liu, Xiu-E Wei, Liangqun Rong. PSD-93 mediates the crosstalk between neuron and microglia and facilitates acute ischemic stroke injury by binding to CX3CL1. Journal of neurochemistry. 2021 Feb 18


    PMID: 33599284

    View Full Text