Correlation Engine 2.0
Clear Search sequence regions


  • 1I0Z (5)
  • amino acids (2)
  • angiogenesis (1)
  • appear (3)
  • biomass (1)
  • biosynthesis (1)
  • breast cancer (1)
  • brilliant blue (1)
  • c b (1)
  • cellular (1)
  • chloramphenicol (1)
  • concept (1)
  • dehydrogenases (34)
  • dimer (22)
  • direct (2)
  • drug design (1)
  • dye (1)
  • e coli (1)
  • enzymes (1)
  • equilibrium (3)
  • escherichia coli (1)
  • essential (7)
  • flow (1)
  • focus (2)
  • gene (3)
  • glycerol (2)
  • glycolysis (4)
  • gossypol (1)
  • gradient (18)
  • guanidinium (1)
  • heart (14)
  • homeostasis (1)
  • hot spots (8)
  • human (3)
  • hydrogen bond (1)
  • hypoxia (1)
  • kanamycin (1)
  • l73a (4)
  • ldh 1 (35)
  • ldh 5 (15)
  • ldh 5 (1)
  • LDH H (73)
  • ldh h4 (2)
  • LDH M (1)
  • LDHA (1)
  • LDHB (2)
  • ligand (28)
  • Ltd (3)
  • mass (15)
  • mgcl2 (1)
  • molecular weight (9)
  • nad (2)
  • native (1)
  • near (1)
  • NMR (7)
  • p53 gene (1)
  • past (1)
  • pathogenesis (2)
  • peptides (7)
  • plasmids (1)
  • polypeptides (1)
  • protein complex (2)
  • protein tetramers (1)
  • protocol (1)
  • reagents (1)
  • reasons (1)
  • redox (1)
  • region rich (1)
  • sds page (1)
  • signals (4)
  • sodium phosphate (5)
  • solvent (1)
  • studies samples (1)
  • subunits (12)
  • symbiosis (1)
  • tetramers (16)
  • tricarboxylic acid (1)
  • tryptophan (4)
  • tween 20 (1)
  • vertebrates (1)
  • via (19)
  • Sizes of these terms reflect their relevance to your search.

    Despite being initially regarded as a metabolic waste product, lactate is now considered to serve as a primary fuel for the tricarboxylic acid (TCA) cycle in cancer cells. At the core of lactate metabolism, lactate dehydrogenases (LDHs) catalyze the interconversion of lactate to pyruvate and as such represent promising targets in cancer therapy. However, direct inhibition of the LDH active site is challenging from physicochemical and selectivity standpoints. However, LDHs are obligate tetramers. Thus, targeting the LDH tetrameric interface has emerged as an appealing strategy. In this work, we examine a dimeric construct of truncated human LDH to search for new druggable sites. We report the identification and characterization of a new cluster of interactions in the LDH tetrameric interface. Using nanoscale differential scanning fluorimetry, chemical denaturation and mass photometry, we identified several residues (E62, D65, L71 and F72) essential for LDH tetrameric stability. Moreover, we report a family of peptide ligands based on this cluster of interactions. We next demonstrated these ligands to destabilize tetrameric LDHs through binding to this new tetrameric interface using nanoscale differential scanning fluorimetry, nuclear magnetic resonance water-ligand observed via gradient spectroscopy and microscale thermophoresis. Altogether, this work provides new insights on the LDH tetrameric interface as well as valuable pharmacological tools for the development of LDH tetramer disruptors. Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

    Citation

    Léopold Thabault, Maxime Liberelle, Katarina Koruza, Esra Yildiz, Nicolas Joudiou, Joris Messens, Lucie Brisson, Johan Wouters, Pierre Sonveaux, Raphaël Frédérick. Discovery of a novel lactate dehydrogenase tetramerization domain using epitope mapping and peptides. The Journal of biological chemistry. 2021 Feb 17:100422


    PMID: 33607109

    View Full Text