Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Organophosphorus compounds (OP) causes prominent delayed neuropathy in vivo and cytotoxicity to neuronal cells in vitro. The primary target protein of OP's neurotoxicity is neuropathy target esterase (NTE), which can convert phosphatidylcholine (PC) to glycerophosphocholine (GPC). Recent studies reveal that autophagic cell death is important for the initiation and progression of OP-induced neurotoxicity both in vivo and in vitro. However, the mechanism of how OP induces autophagic cell death is unknown. Here it is found that GPC is an important organic osmolyte in the neuroblastoma cells, and treatment with tri-o-cresyl phosphate (TOCP), a representative OP, leads to the decrease of GPC and imbalance of extracellular and intracellular osmolality. Knockdown of GPC metabolizing enzyme glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5) reverses TOCP-induced autophagic cell death, which further supports the notion that the reduced GPC level leads to the autophagic cell death. Furthermore, it is found that autophagic cell death is due to the induction of reactive oxygen species (ROS) and mitochondrial damage by imbalance of osmolality with TOCP treatment. In summary, this study reveals that TOCP treatment decreases GPC level and intracellular osmolality, which induces ROS and mitochondrial damage and leads to the cell death and neurite degradation by autophagy. This study lays the foundation for further investigations on the potential therapeutic approaches for OP neurotoxicity or NTE mutation-related neurological diseases. Copyright © 2021 Elsevier B.V. All rights reserved.

Citation

Pan Wang, Yi-Jun Wu, Man-Lian Sun. Decrease of an intracellular organic osmolyte contributes to the cytotoxicity of organophosphate in neuroblastoma cells in vitro. Toxicology. 2021 Apr 15;453:152725

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33617914

View Full Text