Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The DREAM complex orchestrates cell quiescence and the cell cycle. However, how the DREAM complex is deregulated in cancer remains elusive. Here, we report that PAF (PCLAF/KIAA0101) drives cell quiescence exit to promote lung tumorigenesis by remodeling the DREAM complex. PAF is highly expressed in lung adenocarcinoma (LUAD) and is associated with poor prognosis. Importantly, Paf knockout markedly suppressed LUAD development in mouse models. PAF depletion induced LUAD cell quiescence and growth arrest. PAF is required for the global expression of cell-cycle genes controlled by the repressive DREAM complex. Mechanistically, PAF inhibits DREAM complex formation by binding to RBBP4, a core DREAM subunit, leading to transactivation of DREAM target genes. Furthermore, pharmacological mimicking of PAF-depleted transcriptomes inhibited LUAD tumor growth. Our results unveil how the PAF-remodeled DREAM complex bypasses cell quiescence to promote lung tumorigenesis and suggest that the PAF-DREAM axis may be a therapeutic vulnerability in lung cancer. Copyright © 2021 The University of Texas MD Anderson Cancer Center. Published by Elsevier Inc. All rights reserved.

Citation

Moon Jong Kim, Christopher Cervantes, Youn-Sang Jung, Xiaoshan Zhang, Jie Zhang, Sung Ho Lee, Sohee Jun, Larisa Litovchick, Wenqi Wang, Junjie Chen, Bingliang Fang, Jae-Il Park. PAF remodels the DREAM complex to bypass cell quiescence and promote lung tumorigenesis. Molecular cell. 2021 Apr 15;81(8):1698-1714.e6

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33626321

View Full Text