Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Diverse arrays of naturally occurring compounds in plants are synthesized by specialized metabolic enzymes, many of which are distributed taxonomically. Although anthocyanin pigments are widely distributed and ubiquitous, betalains have replaced anthocyanins in most families in Caryophyllales. Anthocyanins and betalains never occur together in the same plant. The formation of betalamic acid, catalyzed by 3,4-dihydroxyphenylalanine (DOPA) 4,5-extradiol dioxygenase (DOD), is a key step in betalain biosynthesis. DODs in betalain-producing plants are coded by LigB genes, homologs of which have been identified in a wide range of higher plant orders, as well as in certain fungi and bacteria. Two classes of LigB homologs have been reported: those found in anthocyanin-producing species and those found in betalain-producing species, which contain DOD. To gain insight into the evolution of specialized metabolic enzymes involved in betalain biosynthesis, we performed a comparative biochemical analysis of Arabidopsis LigB, an extradiol ring-cleavage dioxygenase in anthocyanin-producing Arabidopsis and Phytolacca DOD1 of betalain-producing Phytolacca americana. We show that Arabidopsis LigB catalyzes 2,3-extradiol cleavage of DOPA to synthesize muscaflavin, whereas Phytolacca DOD1 converts DOPA to betalamic acid via 4,5-extradiol cleavage. Arabidopsis LigB also converts caffeic acid, a ubiquitous phenolic compound in higher plants, to iso-arabidopic acid in vitro via 2,3-extradiol cleavage of the aromatic ring. Amino-acid substitution in Arabidopsis LigB and Phytolacca DOD1 led to variable extradiol ring-cleavage function, supporting the suggestion that catalytic promiscuity serves as a starting point for the divergence of new enzymatic activities. © The Author(s) 2021. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Citation

Akane Kasei, Hanako Watanabe, Natsumi Ishiduka, Kyoko Noda, Masatsune Murata, Masaaki Sakuta. Comparative Analysis of the Extradiol Ring-Cleavage Dioxygenase LigB from Arabidopsis and 3,4-Dihydroxyphenylalanine Dioxygenase from Betalain-Producing Plants. Plant & cell physiology. 2021 Sep 24;62(4):732-740

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33638982

View Full Text