Correlation Engine 2.0
Clear Search sequence regions

  • ATF3 (8)
  • breast cancer (7)
  • breast neoplasms (1)
  • cancer gene (1)
  • egfr genes (1)
  • erbb2 genes (1)
  • Esr1 (1)
  • factors (4)
  • female (1)
  • gene (5)
  • human (6)
  • keratins 17 (1)
  • keratins 5 (1)
  • keratins 6 (1)
  • Klf4 (1)
  • like (6)
  • mice (1)
  • microrna (2)
  • Mir143 (1)
  • MIR145 (2)
  • model molecular (1)
  • Pgr (1)
  • Sox2 (1)
  • stem cell (2)
  • target genes (1)
  • Wnt (2)
  • β catenin (1)
  • Sizes of these terms reflect their relevance to your search.

    Basal-like breast cancer (BLBC) is an aggressive and deadly subtype of human breast cancer that is highly metastatic, displays stem-cell like features, and has limited treatment options. Therefore, developing and characterizing preclinical mouse models with tumors that resemble BLBC is important for human therapeutic development. ATF3 is a potent oncogene that is aberrantly expressed in most human breast cancers. In the BK5.ATF3 mouse model, overexpression of ATF3 in the basal epithelial cells of the mammary gland produces tumors that are characterized by activation of the Wnt/β-catenin signaling pathway. Here, we used RNA-Seq and microRNA (miRNA) microarrays to better define the molecular features of BK5.ATF3-derived mammary tumors. These analyses showed that these tumors share many characteristics of human BLBC including reduced expression of Rb1, Esr1, and Pgr and increased expression of Erbb2, Egfr, and the genes encoding keratins 5, 6, and 17. An analysis of miRNA expression revealed reduced levels of Mir145 and Mir143, leading to the upregulation of their target genes including both the pluripotency factors Klf4 and Sox2 as well as the cancer stem-cell-related gene Kras. Finally, we show through knock-down experiments that ATF3 may directly modulate MIR145/143 expression. Taken together, our results indicate that the ATF3 mouse mammary tumor model could provide a powerful model to define the molecular mechanisms leading to BLBC, identify the factors that contribute to its aggressiveness, and, ultimately, discover specific genes and gene networks for therapeutic targeting.


    Leqin Yan, Sally Gaddis, Luis Della Coletta, John Repass, Katherine Leslie Powell, Melissa S Simper, Yueping Chen, Michelle Byrom, Yi Zhong, Kevin Lin, Bin Liu, Yue Lu, Jianjun Shen, Michael C MacLeod. ATF3-Induced Mammary Tumors Exhibit Molecular Features of Human Basal-Like Breast Cancer. International journal of molecular sciences. 2021 Feb 26;22(5)

    Expand section icon Mesh Tags

    Expand section icon Substances

    PMID: 33652981

    View Full Text