Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Anoctamin 6/TMEM16F (ANO6) is a dual-function protein with Ca2+-activated ion channel and Ca2+-activated phospholipid scramblase activities, requiring a high intracellular Ca2+ concentration (e.g., half-maximal effective Ca2+ concentration [EC50] of [Ca2+]i > 10 μM), and strong and sustained depolarization above 0 mV. Structural comparison with Anoctamin 1/TMEM16A (ANO1), a canonical Ca2+- activated chloride channel exhibiting higher Ca2+ sensitivity (EC50 of 1 μM) than ANO6, suggested that a homologous Ca2+-transferring site in the N-terminal domain (Nt) might be responsible for the differential Ca2+ sensitivity and kinetics of activation between ANO6 and ANO1. To elucidate the role of the putative Ca2+-transferring reservoir in the Nt (Nt-CaRes), we constructed an ANO6-1-6 chimera in which Nt-CaRes was replaced with the corresponding domain of ANO1. ANO6- 1-6 showed higher sensitivity to Ca2+ than ANO6. However, neither the speed of activation nor the voltage-dependence differed between ANO6 and ANO6-1-6. Molecular dynamics simulation revealed a reduced Ca2+ interaction with Nt- CaRes in ANO6 than ANO6-1-6. Moreover, mutations on potentially Ca2+-interacting acidic amino acids in ANO6 Nt- CaRes resulted in reduced Ca2+ sensitivity, implying direct interactions of Ca2+ with these residues. Based on these results, we cautiously suggest that the net charge of Nt- CaRes is responsible for the difference in Ca2+ sensitivity between ANO1 and ANO6.


Jae Won Roh, Ga Eun Hwang, Woo Kyung Kim, Joo Hyun Nam. Ca2+ Sensitivity of Anoctamin 6/TMEM16F Is Regulated by the Putative Ca2+-Binding Reservoir at the N-Terminal Domain. Molecules and cells. 2021 Feb 28;44(2):88-100

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 33658434

View Full Text