Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Early in his career, Russ Monson produced a series of influential eco-physiological papers that helped lay the foundation for the study of C4 plant evolution. Among the most important was a 1984 paper with Maurice Ku and Gerry Edwards that outlined the pathway for the evolutionary bridge from C3 to C4 photosynthesis. This model proposed C4 photosynthesis arose out of a shuttle that imported photorespiratory metabolites into bundle sheath (BS) cells, where glycine decarboxylase cleaved off CO2, allowing it to accumulate and be efficiently refixed by BS Rubisco. By the mid-1990's, Monson's research focus had shifted away from C4 plants, save for one 2003 paper on C3 versus C4 stomatal control with Travis Huxman, and a series of critical reviews on C4 evolution. These reviews heavily influenced the modern synthesis of C4 evolutionary studies, which incorporates phylogenomic understanding with physiological, molecular, and structural characterizations of trait shifts in multiple evolutionary lineages. Subsequent research supported the Monson et al. model from 1984, by showing a glycine shuttle occurs in nearly all C3-C4 intermediate species identified. Monson also examined the physiological controls over the ecological distribution of C3, C3-C4 intermediate, and C4 photosynthesis, building our understanding of the fitness value of the intermediate and C4 pathway in relevant microenvironments. By establishing the foundation for discoveries that followed, Russ Monson can rightly be considered a leading pioneer contributing to the evolutionary biology of C4 photosynthesis.

Citation

Rowan F Sage. Russ Monson and the evolution of C4 photosynthesis. Oecologia. 2021 Mar 04


PMID: 33661402

View Full Text