Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Human bone marrow stem cells (HBMSCs) are isolated from the bone marrow. Stem cells can self-renew and differentiate into various types of cells. They are able to regenerate kinds of tissue that are potentially used for tissue engineering. To maintain and expand these cells under culture conditions is difficult-they are easily triggered for differentiation or death. In this study, we describe a new culture formula to culture isolated HBMSCs. This new formula was modified from NCDB 153, a medium with low calcium, supplied with 5% FBS, extra growth factor added to it, and supplemented with N-acetyl-L-cysteine and L-ascorbic acid-2-phosphate to maintain the cells in a steady stage. The cells retain these characteristics as primarily isolated HBMSCs. Moreover, our new formula keeps HBMSCs with high proliferation rate and multiple linage differentiation ability, such as osteoblastogenesis, chondrogenesis, and adipogenesis. It also retains HBMSCs with stable chromosome, DNA, telomere length, and telomerase activity, even after long-term culture. Senescence can be minimized under this new formulation and carcinogenesis of stem cells can also be prevented. These modifications greatly enhance the survival rate, growth rate, and basal characteristics of isolated HBMSCs, which will be very helpful in stem cell research.

Citation

Chung-Da Yang, Shu-Chun Chuang, Tsung-Lin Cheng, Mon-Juan Lee, Hui-Ting Chen, Sung-Yen Lin, Hsuan-Ti Huang, Cheng-Jung Ho, Yi-Shan Lin, Lin Kang, Mei-Ling Ho, Je-Ken Chang, Chung-Hwan Chen. An Intermediate Concentration of Calcium with Antioxidant Supplement in Culture Medium Enhances Proliferation and Decreases the Aging of Bone Marrow Mesenchymal Stem Cells. International journal of molecular sciences. 2021 Feb 20;22(4)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33672524

View Full Text