Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Elongated hypocotyl5 (HY5) is a key transcription factor that promotes photomorphogenesis. Constitutive photomorphogenic1 (COP1)-Suppressor of phytochrome A-105 (SPA) E3 ubiquitin ligase complex promotes ubiquitination and degradation of HY5 to repress photomorphogenesis in darkness. HY5 is also regulated by phosphorylation at serine 36 residue. However, the kinase responsible for phosphorylation of HY5 remains unknown. Here, using extensive in vitro and in vivo biochemical, genetic, and photobiological techniques, we have identified a new kinase that phosphorylates HY5 and demonstrated the significance of phosphorylation of HY5 in Arabidopsis thaliana. We show that SPA proteins are the missing kinases necessary for HY5 phosphorylation. SPAs can directly phosphorylate HY5 in vitro, and the phosphorylated HY5 is absent in the spaQ background in vivo. We also demonstrate that the unphosphorylated HY5 interacts strongly with both COP1 and SPA1 and is the preferred substrate for degradation, whereas the phosphorylated HY5 is more stable in the dark. In addition, the unphosphorylated HY5 actively binds to the target promoters and is the physiologically more active form. Consistently, the transgenic plants expressing the unphosphorylated form of HY5 display enhanced photomorphogenesis. Collectively, our study revealed the missing kinase responsible for direct phosphorylation of HY5 that fine-tunes its stability and activity to regulate photomorphogenesis. © 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.


Wenli Wang, Inyup Paik, Junghyun Kim, Xilin Hou, Sibum Sung, Enamul Huq. Direct phosphorylation of HY5 by SPA kinases to regulate photomorphogenesis in Arabidopsis. The New phytologist. 2021 Jun;230(6):2311-2326

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 33686674

View Full Text