Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Epithelial remodelling plays a crucial role during development. The ability of epithelial sheets to temporarily lose their integrity as they fuse with other epithelial sheets underpins events such as the closure of the neural tube and palate. During fusion, epithelial cells undergo some degree of epithelial-mesenchymal transition (EMT), whereby cells from opposing sheets dissolve existing cell-cell junctions, degrade the basement membrane, extend motile processes to contact each other, and then re-establish cell-cell junctions as they fuse. Similar events occur when an epithelium is wounded. Cells at the edge of the wound undergo a partial EMT and migrate towards each other to close the gap. In this review, we highlight the emerging role of Netrins in these processes, and provide insights into the possible signalling pathways involved. Netrins are secreted, laminin-like proteins that are evolutionarily conserved throughout the animal kingdom. Although best known as axonal chemotropic guidance molecules, Netrins also regulate epithelial cells. For example, Netrins regulate branching morphogenesis of the lung and mammary gland, and promote EMT during Drosophila wing eversion. Netrins also control epithelial fusion during optic fissure closure and inner ear formation, and are strongly implicated in neural tube closure and secondary palate closure. Netrins are also upregulated in response to organ damage and epithelial wounding, and can protect against ischemia-reperfusion injury and speed wound healing in cornea and skin. Since Netrins also have immunomodulatory properties, and can promote angiogenesis and re-innervation, they hold great promise as potential factors in future wound healing therapies. © 2021 S. Karger AG, Basel.


Vishal Chaturvedi, Michael J Murray. Netrins: Evolutionarily Conserved Regulators of Epithelial Fusion and Closure in Development and Wound Healing. Cells, tissues, organs. 2022;211(2):193-211

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 33691313

View Full Text