Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In this study, we established a rapid and sensitive method for the detection of viable Salmonella Typhimurium, Staphylococcus aureus, and Listeria monocytogenes in milk using biotin-exposure-based immunomagnetic separation (IMS) combined with sodium dodecyl sulfate (SDS), propidium monoazide (PMA), and multiplex real-time PCR (mRT-PCR). We used IMS to lessen the assay time for isolation of target bacteria. We then optimized the coupling conditions and immunomagnetic capture process. The immunoreaction and incubation times for 5 μg of mAb coupled with 500 μg of streptavidin-functionalized magnetic beads using a streptavidin-biotin system were 90 and 30 min, respectively. Treatment with SDS-PMA before mRT-PCR amplification eliminated false-positive outcomes from dead bacteria and identified viable target bacteria with good sensitivity and specificity. The limit of detection of IMS combined with the SDS-PMA-mRT-PCR assay for the detection of viable Salmonella Typhimurium, Staph. aureus, and L. monocytogenes in spiked milk matrix samples was 10 cfu/mL and remained significant even in the appearance of 106 cfu/mL of nontarget bacteria. The entire detection process was able to identify viable bacteria within 9 h. The combination of biotin-exposure-mediated IMS and SDS-PMA-mRT-PCR has potential value for the rapid and sensitive detection of foodborne pathogens. Copyright © 2021 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

Citation

Xiuquan Shi, Liang Yu, Cui Lin, Ke Li, Jihua Chen, Hong Qin. Biotin exposure-based immunomagnetic separation coupled with sodium dodecyl sulfate, propidium monoazide, and multiplex real-time PCR for rapid detection of viable Salmonella Typhimurium, Staphylococcus aureus, and Listeria monocytogenes in milk. Journal of dairy science. 2021 Jun;104(6):6588-6597

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33715855

View Full Text