Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In the present study, the uptake and translocation mechanisms of phthalate esters (PAEs) and their primary mono esters metabolites (mPAEs), and the mechanisms of PAEs metabolism in plants were elucidated. The objectives of this study were to: (i) elucidate the fractionation of PAEs and mPAEs in Chinese cabbage (Brassica rapa var. chinensis) by hydroponic experiment, (ii) investigate the PAEs and mPAEs uptake mechanisms in root by inhibitor experiments, (iii) explain the molecular mechanisms of PAE interactions with the plant macromolecules by proteomics analysis and molecular docking, and (iv) reveal the involvement of carboxylesterase in the plant metabolism of PAEs. The results demonstrated that both the apoplastic and symplastic pathways contributed to the uptake of di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP), mono-n-butyl phthalate (MnBP), and mono-(2-ethylhexyl) phthalate (MEHP) by vacuum-infiltration-centrifugation method. The energy-dependent active process was involved for the uptake of DnBP, DEHP, MnBP, and MEHP. The passive uptake pathways of anion mPAEs and neutral PAEs differ. Aquaporins contributed to the uptake of anion MnBP and MEHP, and slow-type anion channel was also responsible for the uptake of anion MEHP. Molecular interactions of PAEs and macromolecules were further characterized by proteomic analysis and molecular docking. PAEs were transferred via non-specific lipid transfer protein by binding hydroponic amino acid residues. The carboxylesterase enzyme was attributed to the metabolism of PAEs to form mPAEs by using crude enzyme extract and commercial pure enzyme. This study provides both experimental and theoretical evidence for uptake, accumulation, and metabolism of PAEs in plants. Copyright © 2021 Elsevier B.V. All rights reserved.

Citation

Zhipeng Cheng, Yu Wang, Biting Qiao, Qiuyue Zhang, Hongwen Sun. Insights into mechanisms involved in the uptake, translocation, and metabolism of phthalate esters in Chinese cabbage (Brassica rapa var. chinensis). The Science of the total environment. 2021 May 10;768:144945

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33736326

View Full Text