Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Guinea-worm disease (GWD) was thought to be almost eliminated in Chad when it reemerged in 2010. The disease now shows a peculiar pattern of spreading along Chari River and its tributaries, rather than clustering around a particular drinking water source. We create a mathematical model of GWD that includes the population dynamics of the parasite as well as the dynamics of its hosts (copepods, fish, humans, and domestic dogs). We calibrate our model based on data from the literature and validate it on the recent GWD annual incidence data from Chad. The effective reproduction number predicted by our model agrees well with the empirical value of roughly 1.25 derived directly from the data. Our model thus supports the hypothesis that the parasite now uses fish as intermediate transport hosts. We predict that GWD transmission can be most easily interrupted by avoiding eating uncooked fish and by burying the fish entrails to prevent transmission through dogs. Increasing the mortality of copepods and even partially containing infected dogs to limit their access to water sources is another important factor for GWD eradication. Copyright © 2021 Elsevier Ltd. All rights reserved.

Citation

Cesar A Gonzalez Engelhard, Allison P Hodgkins, Essence E Pearl, Paul K Spears, Jan Rychtář, Dewey Taylor. A mathematical model of Guinea worm disease in Chad with fish as intermediate transport hosts. Journal of theoretical biology. 2021 Jul 21;521:110683

Expand section icon Mesh Tags


PMID: 33744311

View Full Text