Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

It has been clearly indicated that osteoarthritis (OA) is an inflammatory and degenerative disease that could be promoted by Rho-kinase (ROCK); however, little is known about the role of ROCK/inhibitor κB alpha (IκB-α)/nuclear factor-κB (NF-κB) p65 pathway activation in interleukin-1β (IL-1β) induced inflammatory response and oxidative stress in primary human chondrocytes. To test this hypothesis, we focused on determining ROCK-II, IκB-α, p-IκB-α, NF-κB p65, p-NF-κB p65, IL-6, tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2), p22phox, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subtype 4 (NOX4) protein expression, ROCK-II activity, NADPH oxidase levels, and total antioxidant capacity (TAC) in the presence and absence of ROCK-inhibitor fasudil. IL-1β (2 ng·mL-1, 24 h) increased the expression of ROCK-II, p-IκB-α, NF-κB p65, p-NF-κB p65, IL-6, TNF-α, COX-2, and p22phox proteins, and decreased the expression of IκB-α, and the NOX4 protein level did not alter. ROCK activity and NADPH oxidase levels were increased, whereas the TAC was decreased by IL-1β. Fasudil (10-5-10-7 M) reversed all these changes induced by IL-1β. These results demonstrate that ROCK/IκB-α/NF-κB p65 pathway activation contributes to the IL-1β-induced inflammatory response and oxidative stress, and thus, ROCK inhibition might be a beneficial treatment option for OA patients mainly based on its anti-inflammatory and antioxidant effects.

Citation

Rukiye Nalan Tiftik, Meryem Temiz-Reşitoğlu, Demet Sinem Güden, Gülsen Bayrak, İsmail Ün, Şakir Necat Yılmaz, Seyhan Şahan-Fırat. Involvement of Rho-kinase/IκB-α/NF-κB activation in IL-1β-induced inflammatory response and oxidative stress in human chondrocytes. Canadian journal of physiology and pharmacology. 2021 Apr;99(4):418-426

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33769089

View Full Text