Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The purpose of this study was to test the ability of serum protein S100B (S100B) and brain lipid-binding protein (BLBP) to identify athletes who sustained a sports-related concussion (SRC). Subjects included a non-athlete group, whereas the rugby players were separated into two match-control and two SRC groups. The match-control <1-h group included players undergoing venipuncture within 60-min post-match, and the match-control >1-h/<8-h group included players undergoing venipuncture between 1 and 8 h post-match; the SRC <1-h group included players undergoing venipuncture within 60-min post-SRC, and the SRC >1-h/<8-h group included players undergoing venipuncture between 1 and 8 h post-SRC. Serum S100B concentrations were not significantly different (p = 0.112) among protocols. Serum BLBP was greater in the match-control <1-h group (p < 0.001) and the SRC >1-h/<8-h group (p = 0.003) compared to the non-athlete group. The ability of serum BLBP to distinguish between SRC groups and the non-athlete group was shown to be good to excellent (AUROC, >0.8; p < 0.05), and between match-control groups and the non-athlete group were shown to be excellent (AUROC, >0.9; p < 0.05). Our results show that serum S100B is not useful in distinguishing concussed or post-match athletes from non-athletes. However, serum BLBP was shown to distinguish non-athletes from post-match or concussed athletes. Serum BLBP could not distinguish between athletes experiencing an SRC within 1 h of blood draw and those participating in a contact sport.

Citation

Matthew J Rogatzki, Jessica E Morgan, Julien S Baker, Allan Knox, Jorge M Serrador. Protein S100B and Brain Lipid-Binding Protein Concentrations in the Serum of Recently Concussed Rugby Players. Journal of neurotrauma. 2021 Aug 15;38(16):2247-2254

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33779297

View Full Text