Correlation Engine 2.0
Clear Search sequence regions


  • CD38 (8)
  • cellular (1)
  • coronavirus (1)
  • enzymes (1)
  • gene (1)
  • glycoproteins (2)
  • humans (1)
  • lung (1)
  • nad (3)
  • oxygen (1)
  • phosphate (1)
  • protein human (1)
  • research (1)
  • sars cov (1)
  • sirtuins (1)
  • viral diseases (1)
  • Sizes of these terms reflect their relevance to your search.

    This medical review addresses the hypothesis that CD38/NADase is at the center of a functional axis (i.e., intracellular Ca2+ mobilization/IFNγ response/reactive oxygen species burst) driven by severe acute respiratory syndrome coronavirus 2 infection, as already verified in respiratory syncytial virus pathology and CD38 activity in other cellular settings. Key features of the hypothesis are that 1) the substrates of CD38 (e.g., NAD+ and NADP+) are depleted by viral-induced metabolic changes; 2) the products of the enzymatic activity of CD38 [e.g., cyclic adenosine diphosphate-ribose (ADPR)/ADPR/nicotinic acid adenine dinucleotide phosphate] and related enzymes [e.g., poly(ADP-ribose)polymerase, Sirtuins, and ADP-ribosyl hydrolase] are involved in the anti-viral and proinflammatory response that favors the onset of lung immunopathology (e.g., cytokine storm and organ fibrosis); and 3) the pathological changes induced by this kinetic mechanism may be reduced by distinct modulators of the CD38/NAD+ axis (e.g., CD38 blockers, NAD+ suppliers, among others). This view is supported by arrays of associative basic and applied research data that are herein discussed and integrated with conclusions reported by others in the field of inflammatory, immune, tumor, and viral diseases.

    Citation

    Alberto L Horenstein, Angelo C Faini, Fabio Malavasi. CD38 in the age of COVID-19: a medical perspective. Physiological reviews. 2021 Oct 01;101(4):1457-1486

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 33787351

    View Full Text