Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The tumor targeting and stimuli responsiveness behavior of intelligent drug delivery systems imparts effective therapeutic delivery and decreases the toxicity of conventional chemotherapeutic agents in off-target organs. To achieve the receptor targeting and smart drug release, several strategies have been employed to engineer nano-carrier with stimulus sensitivity. In this work, mannose receptor-targeted and matrix metalloproteinase (MMP) responsive gelatin nanoparticles were developed and assessed for its receptor targeting and "on-demand" controlled drug delivery in lung cancer therapeutics. MMPs are protease enzymes and over-expressed in tumorous tissues in all the stages of cancer. The cancer cells also have over-expressed mannose receptors on the cell surface. The surface decoration of gelatin nanoparticles with concanavalin A (con-A) tends to bind with mannose moiety of cell surface glycoproteins which enhances the cancer cell-specific higher uptake of nanoparticles. Gelatin nanoparticles have attracted significant attraction in recent years as a potential drug carrier because of its good biocompatibility and versatile physicochemical properties desirable to deliver the drug. Cisplatin was complexed with the gelatin matrix (CG-NP) to evaluate stimuli responsiveness with the lung cancer cells and its release pattern. In this smart inhalable delivery system, cisplatin loaded gelatin nanoparticles were surface decorated with con-A (CCG-NP). In tumorous cells, con-A coating is expected to enhance mannose receptor-specific cellular internalization of CCG-NP, and subsequently high level of MMP in tumor tissues would help to release cisplatin in response and ensures controlled drug release. The synthesized CCG-NP has shown enzyme triggered drug release and favorable endocytosis after incubation of 12 h compare to uncoated nanoparticles. The efficacy of CCG-NP significantly increased in presence of MMP-2 enzyme in lung cancer cell line A549 cells. It also significantly enhanced reactive oxygen species generation, cell cycle arrest in S and G2/M phase, and apoptosis in cancer cells. Therefore, inhalable CCG-NP promises a pragmatic approach to construct a receptor targeting and an "on-demand" drug delivery system to efficiently deliver the drug at the tumor site only. Copyright © 2021. Published by Elsevier B.V.

Citation

Kalpesh Vaghasiya, Eupa Ray, Raghuraj Singh, Krishna Jadhav, Ankur Sharma, Rehan Khan, Om Prakash Katare, Rahul Kumar Verma. Efficient, enzyme responsive and tumor receptor targeting gelatin nanoparticles decorated with concanavalin-A for site-specific and controlled drug delivery for cancer therapy. Materials science & engineering. C, Materials for biological applications. 2021 Apr;123:112027

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33812642

View Full Text