Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Trichophyton mentagrophyte (TM), a zoonotic pathogen, has been endangering public health due to emerging drug resistance. Although increased attention is paid to this issue, there is very limited research available on drug resistance in TM. In this study, we studied the gene and proteomic changes, morphological changes, cellular fat localization, fat content changes, and biofilm of TM treated with different substances. The TM growth curve showed a positive correlation with the concentration of Fenarimol (FE), genistein (GE), clotrimazole (KM), and Miconazole nitrate salt (MK). The morphology of TM cells changed in different degrees after treatment with different substances as observed by TEM and SEM. The results showed that under KM and berberine hydrochloride (BB) treatment, a total of 3305 differentially expressed genes were detected, with the highest number in the KM-treated group (578 up-regulated and 615 down-regulated). A total of 847 proteins and 1850 peptides were identified in TM proteomics. Nile red staining showed that the fat content of TM was significantly higher in the BB-, ethidium bromide- (EB), FE-, KM-, Adriamycin hydrochloride- (YA), and MK-treated group compared to the control group. Results of the biofilm thickness showed that it gradually increased under treatment with specific concentrations of KM or BB, which may be related to the up-regulation of ERG25 and CYP related gene proteins. It is suggested that in order to effectively deal with dermatomycosis caused by TM, it is necessary to inhibit the expression of ERG25 and CYP related genes and fat metabolism, which can result in the inhibition of the production of biofilm by the fungus and solve the problem of fungal drug resistance in clinical settings.


Chenwen Xiao, Jiaoyu Wang, Zhenfeng Liao, Yee Huang, Quanan Ji, Yan Liu, Fei Su, Lijun Xu, Qiang Wei, Yao Pan, Ke Li, Guolian Bao. Assessment of the mechanism of drug resistance in Trichophyton mentagrophytes in response to various substances. BMC genomics. 2021 Apr 07;22(1):250

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 33827426

View Full Text