Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Nitrogen (N) deposition from agriculture and combustion of fossil fuels is a major threat to plant diversity, but its effects on organisms at higher trophic levels are unclear. We investigated how N deposition may affect species richness and abundance (number of individuals per species) in butterflies. We reviewed the peer-reviewed literature on variables used to explain spatial variation in butterfly species richness and found that vegetation variables appeared to be as important as climate and habitat variables in explaining butterfly species richness. It thus seemed likely that increased N deposition could indirectly affect butterfly communities via its influence on plant communities. To test this prediction, we analyzed data from the Swiss biodiversity monitoring program for vascular plants and butterflies in 383 study sites of 1 km2 that are evenly distributed throughout Switzerland. The area has a modeled N deposition gradient of 2-44 kg N ha-1 year-1 . We used traditional linear models and structural equation models to infer the drivers of the spatial variation in butterfly species richness across Switzerland. High N deposition was consistently linked to low butterfly diversity, suggesting a net loss of butterfly diversity through increased N deposition. We hypothesize that at low elevations, N deposition may contribute to a reduction in butterfly species richness via microclimatic cooling due to increased plant biomass. At higher elevations, negative effects of N deposition on butterfly species richness may also be mediated by reduced plant species richness. In most butterfly species, abundance was negatively related to N deposition, but the strongest negative effects were found for species of conservation concern. We conclude that in addition to factors such as intensified agriculture, habitat fragmentation, and climate change, N deposition is likely to play a key role in negatively affecting butterfly diversity and abundance. © 2021 Society for Conservation Biology.

Citation

Tobias Roth, Lukas Kohli, Beat Rihm, Reto Meier, Valentin Amrhein. Negative effects of nitrogen deposition on Swiss butterflies. Conservation biology : the journal of the Society for Conservation Biology. 2021 Dec;35(6):1766-1776

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33829544

View Full Text