Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Current environmental monitoring studies are generally confined to several target organophosphate esters (OPEs), and there is a lack of strategies for comprehensively screening all potential OPEs in environmental samples. Here, an effective and accurate strategy was developed for the target, suspect, and functional group-dependent screening of OPEs by the use of ultrahigh-performance liquid chromatography-Q Exactive hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS), and this strategy was applied for the analysis of n = 74 sediment samples (including 23 surface sediment samples and 51 sediment core samples) collected from Taihu Lake (eastern China) in 2019. In these analyzed samples, we successfully identified n = 35 OPEs, and 23 of them were reported in this region for the first time. In addition, this strategy also presented other interesting findings, i.e., (1) OPE concentrations decreased with increasing distance from the coast of the lake; (2) the newly identified 3-hydroxyphenyl diphenyl phosphate (meta-OH-TPHP) was not statistically significantly correlated with triphenyl phosphate (TPHP; r = 0.02494, p = 0.9101) but with resorcinol bis(diphenyl phosphate) (RDP) (r = 0.9271, p < 0.0001) and three other OPEs; and (3) the summed concentrations of aryl OPEs (∑arylOPEs) in sediment core samples exhibited significantly increasing trends as the depth decreased. Collectively, this study provided an effective strategy that was successfully applied for comprehensive screening of OPEs in the sediments of Taihu Lake, and this strategy could have promising potential to be extended to other environmental matrices or samples.


Langjie Ye, Weikun Meng, Jianan Huang, Jianhua Li, Guanyong Su. Establishment of a Target, Suspect, and Functional Group-Dependent Screening Strategy for Organophosphate Esters (OPEs): "Into the Unknown" of OPEs in the Sediment of Taihu Lake, China. Environmental science & technology. 2021 May 04;55(9):5836-5847

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 33891400

View Full Text