Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

About 50% of patients with arrhythmogenic cardiomyopathy (ACM) carry a pathogenic or likely pathogenic mutation in the desmosomal genes. However, there is a significant number of patients without positive familial anamnesis. Therefore, the molecular reasons for ACM in these patients are frequently unknown and a genetic contribution might be underestimated. Here, we used a next-generation sequencing (NGS) approach and in addition single nucleotide polymor-phism (SNP) arrays for the genetic analysis of two independent index patients without familial medical history. Of note, this genetic strategy revealed a homozygous splice site mutation (DSG2-c.378+1G>T) in the first patient and a nonsense mutation (DSG2-p.L772X) in combination with a large deletion in DSG2 in the second one. In conclusion, a recessive inheritance pattern is likely for both cases, which might contribute to the hidden medical history in both families. This is the first report about these novel loss-of-function mutations in DSG2 that have not been previously identi-fied. Therefore, we suggest performing deep genetic analyses using NGS in combination with SNP arrays also for ACM index patients without obvious familial medical history. In the future, this finding might has relevance for the genetic counseling of similar cases.

Citation

Andreas Brodehl, Alexey Meshkov, Roman Myasnikov, Anna Kiseleva, Olga Kulikova, Bärbel Klauke, Evgeniia Sotnikova, Caroline Stanasiuk, Mikhail Divashuk, Greta Marie Pohl, Maria Kudryavtseva, Karin Klingel, Brenda Gerull, Anastasia Zharikova, Jan Gummert, Sergey Koretskiy, Stephan Schubert, Elena Mershina, Anna Gärtner, Polina Pilus, Kai Thorsten Laser, Valentin Sinitsyn, Sergey Boytsov, Oxana Drapkina, Hendrik Milting. Hemi- and Homozygous Loss-of-Function Mutations in DSG2 (Desmoglein-2) Cause Recessive Arrhythmogenic Cardiomyopathy with an Early Onset. International journal of molecular sciences. 2021 Apr 06;22(7)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33917638

View Full Text