Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19). The World Health Organization (WHO) has announced that COVID-19 is a pandemic having a higher spread rate rather than the mortality. Identification of a potential approach or therapy against COVID-19 is still under consideration. Therefore, it is essential to have an insight into SARS-CoV-2, its interacting partner, and domains for an effective treatment. The present study is divided into three main categories, including SARS-CoV-2 prominent receptor and its expression levels, other interacting partners, and their binding domains. The first section focuses primarily on coronaviruses' general aspects (SARS-CoV-2, SARS-CoV, and the Middle East Respiratory Syndrome Coronaviruses (MERS-CoV)) their structures, similarities, and mode of infections. The second section discusses the host receptors which includes the human targets of coronaviruses like dipeptidyl peptidase 4 (DPP4), CD147, CD209L, Angiotensin-Converting Enzyme 2 (ACE2), and other miscellaneous targets (type-II transmembrane serine proteases (TTSPs), furin, trypsin, cathepsins, thermolysin, elastase, phosphatidylinositol 3-phosphate 5-kinase, two-pore segment channel, and epithelium sodium channel C-α subunit). The human cell receptor, ACE2 plays an essential role in the Renin-Angiotensin system (RAS) pathway and COVID-19. Thus, this section also discusses the ACE2 expression and risk of COVID-19 infectivity in various organs and tissues such as the liver, lungs, intestine, heart, and reproductive system in the human body. Absence of ACE2 protein expression in immune cells could be used for limiting the SARS-CoV-2 infection. The third section covers the current available approaches for COVID-19 treatment. Overall, this review focuses on the critical role of human cell receptors involved in coronavirus pathogenesis, which would likely be used in designing target-specific drugs to combat COVID-19.


Pawan Kumar Raghav, Keerthana Kalyanaraman, Dinesh Kumar. Human cell receptors: potential drug targets to combat COVID-19. Amino acids. 2021 Jun;53(6):813-842

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 33950300

View Full Text