Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Benzosuberene compounds with a pyrrolone group adhered to it are compounds extracted from the oils of Cedrus deodara plant, that bear inhibitory capabilities. Tobacco mosaic virus is known to affect crop production every year. The currently known inhibitors against TMV have a weak inhibition effect and also tend to be toxic towards non-target living organisms as well as the environment. Thus, the requirement of non-toxic potent inhibitors is the need of the hour, which led us to test our benzosuberene molecules on the binding site of TMV and check their affinity as well as stability. The non-toxic nature of these molecules has already been experimentally established. Through in-silico analysis involving docking and simulation experiments, we compared the interaction pattern of these ligand molecules with the already present inhibitors. Our investigation proved that the reported ligands (ligands 3, 7, 9, and 17 obtained -177.103, -228.632, -184.134, and - 188.075 kJ/mol binding energies, respectively) interacted with the binding site of TMV much efficiently than the known inhibitors (Ribavirin and Zhao et al. 2020 obtained 121.561 and - 221.393 kJ/mol binding energies, respectively). Moreover, they acquired a stable conformation inside the binding pocket, where a higher number of binding site residues contributed towards interaction. Thus, their structural framework can be optimized for the exploration of their antiviral properties to develop potent botanical viricides against plant virus infection. Copyright © 2021 Elsevier Inc. All rights reserved.

Citation

Jatin Sharma, Vijay Kumar Bhardwaj, Pralay Das, Rituraj Purohit. Plant-based analogues identified as potential inhibitor against tobacco mosaic virus: A biosimulation approach. Pesticide biochemistry and physiology. 2021 Jun;175:104858

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33993976

View Full Text