Pragati Singh, Mohammad Irshad Reza, Anees A Syed, Athar Husain, Roshan Katekar, Jiaur R Gayen
Life sciences 2021 Aug 15Pancreastatin (PST) is a crucial bioactive peptide derived from chromogranin A (CHGA) proprotein that exhibits an anti-insulin effect on adipocytes. Herein, we investigated the effects of PST on brown adipose tissues (BAT) and white adipose tissue (WAT) in connection with uncoupling protein-1 (UCP-1) regulated energy expenditure in high fructose diet (HFrD) fed and vinylcyclohexenediepoxide (VCD) induced perimenopausal rats. We administered VCD in rats for 17 consecutive days and fed HFrd for 12 weeks. After 12 weeks estradiol and progesterone levels were detected. Furthermore, detection of glucose tolerance, insulin sensitivity, and body composition revealed impaired glucose homeostasis and enhanced PST levels. Effects of enhanced PST on UCP-1 level in BAT and WAT of perimenopausal rats were further investigated. Reduced serum estradiol, progesterone, and attenuated insulin response confirmed perimenopausal model development. Furthermore, enhanced PST serum level and its increased expression in BAT and WAT downregulated the UCP-1 expression. Subsequently, impaired ATP level, NADP/NADPH ratio, citrate synthase activity, enhanced mitochondrial reactive oxygen species (ROS) generation and perturbed mitochondrial membrane potential, further exacerbated mitochondrial dysfunction, cellular ROS production, and promoted apoptosis. Interestingly, PST inhibition by PST inhibitor peptide-8 (PSTi8) displayed a favorable impact on UCP-1 and energy expenditure. The aforementioned outcomes indicated the substantial role of PST in altering the UCP-1 expression and associated energy homeostasis. Hence our results corroborate novel avenues to unravel the quest deciphering PST's role in energy homeostasis and its association with perimenopause. Copyright © 2021 Elsevier Inc. All rights reserved.
Pragati Singh, Mohammad Irshad Reza, Anees A Syed, Athar Husain, Roshan Katekar, Jiaur R Gayen. Pancreastatin mediated regulation of UCP-1 and energy expenditure in high fructose fed perimenopausal rats. Life sciences. 2021 Aug 15;279:119677
PMID: 34081990
View Full Text