Correlation Engine 2.0
Clear Search sequence regions


  • amino acid sequence (1)
  • cell death (1)
  • cytokines (2)
  • flagellin (10)
  • G CSF (2)
  • labor (1)
  • mammals (1)
  • mice (2)
  • NF κB (1)
  • parent (1)
  • TLR5 (2)
  • Sizes of these terms reflect their relevance to your search.

    Exploration of medical radiation countermeasures (MRCs) has great implications in protection of mammals from radiation damages. While flagellin has been recently reported to show radioprotective effects, the relationships between flagellin structure and radioprotective activity are rarely explored. Herein, we deliberately edited the amino acid sequence of flagellin in its binding domain with toll-like receptor 5 (TLR5) for exploration of potent flagellin derivatives (Fds). An in vitro screening paradigm was developed to examine the radioprotective effects of six engineered Fds. Notably, mutation of 103 threonine on flagellin into asparagine resulted in a potent MRC candidate (Fd-T103N) displaying 1.28-fold increment of interactions with TLR5. Fd-T103N was able to further activate NF-κB pathway, induce immune protective cytokine (e.g. G-CSF) release, and significantly ameliorate γ-irradiation induced cell death. The protection effects of Fd-T103N were further validated in mice exposed to 10 Gy γ-irradiations. Compared to parent flagellin, Fd-T103N treatment showed higher G-CSF release in mouse blood, lower intestine damages, and 13% increments of mouse survival rates. In short, the established predictive paradigm could greatly reduce the labor-, time- and animal-costs in exploration of MRC candidates. Fd-T103N is a promising candidate of investigational new drug for radioprotection. Copyright © 2021 Elsevier B.V. All rights reserved.

    Citation

    Tong Shi, Jun Jiang, Meng Gao, Ronglin Ma, Xuejun Chen, Ruihua Zhang, Jianfu Xu, Weili Wang, Shujuan Xu, Xi Liu, Huizhen Zheng, Chen Wang, Liqin Li, Ruibin Li. Editing flagellin derivatives for exploration of potent radioprotective agents. European journal of pharmacology. 2021 Sep 15;907:174259

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 34153338

    View Full Text