Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In cardiovascular magnetic resonance, late gadolinium enhancement (LGE) has become the cornerstone of myocardial tissue characterization. It is widely used in clinical routine to diagnose and characterize the myocardial tissue in a wide range of ischemic and nonischemic cardiomyopathies. The recent growing interest in imaging left atrial fibrosis has led to the development of novel whole-heart high-resolution late gadolinium enhancement (HR-LGE) techniques. Indeed, conventional LGE is acquired in multiple breath-holds with limited spatial resolution: ~1.4-1.8 mm in plane and 6-8 mm slice thickness, according to the Society for Cardiovascular Magnetic Resonance standardized guidelines. Such large voxel size prevents its use in thin structures such as the atrial or right ventricular walls. Whole-heart 3D HR-LGE images are acquired in free breathing to increase the spatial resolution (up to 1.3 × 1.3 × 1.3 mm3 ) and offer a better detection and depiction of focal atrial fibrosis. The downside of this increased resolution is the extended scan time of around 10 min, which hampers the spread of HR-LGE in clinical practice. Initially introduced for atrial fibrosis imaging, HR-LGE interest has evolved to be a tool to detect small scars in the ventricles and guide ablation procedures. Indeed, the detection of scars, nonvisible with conventional LGE, can be crucial in the diagnosis of myocardial infarction with nonobstructed coronary arteries, in the detection of the arrhythmogenic substrate triggering ventricular arrhythmia, and improve the confidence of clinicians in the challenging diagnoses such as the arrhythmogenic right ventricular cardiomyopathy. HR-LGE also offers a precise visualization of left ventricular scar morphology that is particularly useful in planning ablation procedures and guiding them through the fusion of HR-LGE images with electroanatomical mapping systems. In this narrative review, we attempt to summarize the technical particularities of whole-heart HR-LGE acquisition and provide an overview of its clinical applications with a particular focus on the ventricles. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 2. © 2021 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.

Citation

Solenn Toupin, Théo Pezel, Aurélien Bustin, Hubert Cochet. Whole-Heart High-Resolution Late Gadolinium Enhancement: Techniques and Clinical Applications. Journal of magnetic resonance imaging : JMRI. 2022 Apr;55(4):967-987

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34155715

View Full Text