Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Parvalbumin (PV)-expressing neurons have been implicated in the pathology of autism spectrum disorders (ASD). Loss of PV expression and/or reduced number of PV-expressing neurons have been reported not only in genetic and environmental rodent models of ASD, but also in post-mortem analyses of brain tissues from ASD vs. healthy control human subjects. PV-expressing neurons play a pivotal role in the maintenance of the balance between excitation and inhibition within neural circuits in part because of their fast-spiking properties. Their high firing rate is mostly regulated by the voltage-gated potassium channel Kv3.1. It is yet unknown whether disturbances in the electrophysiological properties of PV-expressing neurons per se can lead to behavioral disturbances. We assessed locomotor activity, social interaction, recognition and memory, and stereotypic behaviors in Kv3.1 wild-type (WT) and knockout (KO) mice. We then used Western Blot analyses to measure the impact of Kv3.1 deficiency on markers of GABA transmission (PV and GAD67) and neural circuit activity (Egr1). Deficiency in Kv3.1 channel is sufficient to induce social deficits, hyperactivity and stereotypic behaviors. These behavioral changes were independent of changes in GAD67 levels and associated with increased levels of PV protein in the prefrontal cortex and striatum. These findings reveal that a loss of PV expression is not a necessary factor to induce an ASD-like phenotype in mice and support the need for further investigation to fully understand the contribution of PV-expressing neurons to ASD pathology. Copyright © 2021 Elsevier B.V. All rights reserved.

Citation

Sarah Bee, Amanda Ringland, Laurence Coutellier. Social impairments in mice lacking the voltage-gated potassium channel Kv3.1. Behavioural brain research. 2021 Sep 10;413:113468

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34274375

View Full Text