Clear Search sequence regions


filter terms:
  • catio3 (10)
  • Sizes of these terms reflect their relevance to your search.

    Herein, the CaTiO3/Cu/TiO2 all-solid-state Z-scheme heterojunction is successfully designed via Cu nanoparticles situating at the interface between CaTiO3 and TiO2 with a new synthesis route. Interestingly, TiO2 nanosheets are generated in-situ on the surface of CaTiO3 in the second step hydrothermal reaction. The lifetimes of photoexcited carriers, photoluminescence emission spectra and transient photocurrent response tests have confirmed that the efficient Z-scheme charge transmission path of the CaTiO3/Cu/TiO2 is beneficial to facilitate the separation of photogenerated carriers and reduce their recombination efficiency. As expected, the hydrogen generation rate of CaTiO3/Cu/TiO2 is increased to 23.550 mmol g-1h-1 with the appropriate amount of copper loading, which is about 981 times and 93 times higher than that of pristine CaTiO3 (0.024 mmol g-1h-1) and CaTiO3/TiO2 (0.253 mmol g-1h-1), respectively. Furthermore, the CaTiO3/Cu/TiO2 sample shows good stability in cycle experiments. Particularly, experimental results show that the non-noble metal Cu nanoparticles can be an effective electron mediator. And these merits strongly demonstrate that the CaTiO3/Cu/TiO2 composites have potential application in photocatalytic field. This study can provide fundamental guidance for designing rationally efficient non-noble metal vector Z-scheme system photocatalysts with outstanding photocatalytic H2 generation performance. Copyright © 2021 Elsevier Inc. All rights reserved.

    Citation

    Junfeng Yang, Chenyang Shi, Yanhui Dong, He Su, Hang Sun, Yao Guo, Shengyan Yin. Efficient hydrogen generation of vector Z-scheme CaTiO3/Cu/TiO2 photocatalyst assisted by cocatalyst Cu nanoparticles. Journal of colloid and interface science. 2022 Jan;605:373-384


    PMID: 34332411

    View Full Text