Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

SMC complexes are widely conserved ATP-powered DNA-loop-extrusion motors indispensable for organizing and faithfully segregating chromosomes. How SMC complexes translocate along DNA for loop extrusion and what happens when two complexes meet on the same DNA molecule is largely unknown. Revealing the origins and the consequences of SMC encounters is crucial for understanding the folding process not only of bacterial, but also of eukaryotic chromosomes. Here, we uncover several factors that influence bacterial chromosome organization by modulating the probability of such clashes. These factors include the number, the strength, and the distribution of Smc loading sites, the residency time on the chromosome, the translocation rate, and the cellular abundance of Smc complexes. By studying various mutants, we show that these parameters are fine-tuned to reduce the frequency of encounters between Smc complexes, presumably as a risk mitigation strategy. Mild perturbations hamper chromosome organization by causing Smc collisions, implying that the cellular capacity to resolve them is limited. Altogether, we identify mechanisms that help to avoid Smc collisions and their resolution by Smc traversal or other potentially risky molecular transactions. © 2021, Anchimiuk et al.

Citation

Anna Anchimiuk, Virginia S Lioy, Florian Patrick Bock, Anita Minnen, Frederic Boccard, Stephan Gruber. A low Smc flux avoids collisions and facilitates chromosome organization in Bacillus subtilis. eLife. 2021 Aug 04;10

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34346312

View Full Text