Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The binding of phosphatidylinositol 4,5-bisphosphate (PIP2) to the ion channel transient receptor potential vanilloid 5 (TRPV5) is critical for its function. We use atomically detailed simulations and the milestoning theory to compute the free energy profile and the kinetics of PIP2 binding to TRPV5. We estimate the rate of binding and the impact of the protonation state on the process. Several channel residues are identified as influential in the association event and will be interesting targets for mutation analysis. Our simulations reveal that PIP2 binds to TRPV5 in an unprotonated state and is protonated in the membrane. The switch between the protonation state of PIP2 is modeled as a diabatic transition and occurs about halfway through the reaction.

Citation

Arman Fathizadeh, Eric Senning, Ron Elber. Impact of the Protonation State of Phosphatidylinositol 4,5-Bisphosphate (PIP2) on the Binding Kinetics and Thermodynamics to Transient Receptor Potential Vanilloid (TRPV5): A Milestoning Study. The journal of physical chemistry. B. 2021 Aug 26;125(33):9547-9556

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34396776

View Full Text