Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The poor vascular development of an endometrium is the key cause of a thin endometrium due to the vascular endothelial growth factor (VEGF) decreasing in the glandular epithelium. Hence, inducing angiogenesis is an effective strategy for thin endometrium treatment in clinic. Herein, we developed a novel angiogenic hydrogel microsphere based on methacrylated hyaluronic acid (HAMA) loaded with VEGF for the treatment of a thin endometrium by a microfluidic electrospray technique. The generated HAMA microspheres with uniform size, porous structure, and satisfactory biocompatibility increased the drug-loading ability and controlled the drug-release rate by adjusting the hydrogel concentration. Besides, the HAMA microspheres loaded with VEGF showed satisfactory biocompatibility and promoted blood vessel formation in vitro. More importantly, the combination of HA and VEGF promoted new blood vessels and endometrial regeneration of a thin endometrium in vivo. Therefore, the combination of HA and VEGF would be conducive to the development of a drug-delivery microsphere with excellent biocompatibility and therapeutic effect for thin endometrium treatment and other biomedical applications.

Citation

Lanjie Lei, Qizhuang Lv, Yan Jin, Hong An, Zhe Shi, Ge Hu, Yuze Yang, Xiangguo Wang, Lei Yang. Angiogenic Microspheres for the Treatment of a Thin Endometrium. ACS biomaterials science & engineering. 2021 Oct 11;7(10):4914-4920

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34415138

View Full Text