Correlation Engine 2.0
Clear Search sequence regions

  • behavior (4)
  • female (1)
  • interneurons (1)
  • neurons (1)
  • pdfr 1 (8)
  • pheromones (2)
  • receptor (1)
  • receptor 1 (1)
  • sexes (1)
  • signal (6)
  • Sizes of these terms reflect their relevance to your search.

    To make adaptive feeding and foraging decisions, animals must integrate diverse sensory streams with multiple dimensions of internal state. In C. elegans, foraging and dispersal behaviors are influenced by food abundance, population density, and biological sex, but the neural and genetic mechanisms that integrate these signals are poorly understood. Here, by systematically varying food abundance, we find that chronic avoidance of the population-density pheromone ascr#3 is modulated by food thickness, such that hermaphrodites avoid ascr#3 only when food is scarce. The integration of food and pheromone signals requires the conserved neuropeptide receptor PDFR-1, as pdfr-1 mutant hermaphrodites display strong ascr#3 avoidance, even when food is abundant. Conversely, increasing PDFR-1 signaling inhibits ascr#3 aversion when food is sparse, indicating that this signal encodes information about food abundance. In both wild-type and pdfr-1 hermaphrodites, chronic ascr#3 avoidance requires the ASI sensory neurons. In contrast, PDFR-1 acts in interneurons, suggesting that it modulates processing of the ascr#3 signal. Although a sex-shared mechanism mediates ascr#3 avoidance, food thickness modulates this behavior only in hermaphrodites, indicating that PDFR-1 signaling has distinct functions in the two sexes. Supporting the idea that this mechanism modulates foraging behavior, ascr#3 promotes ASI-dependent dispersal of hermaphrodites from food, an effect that is markedly enhanced when food is scarce. Together, these findings identify a neurogenetic mechanism that sex-specifically integrates population and food abundance, two important dimensions of environmental quality, to optimize foraging decisions. Further, they suggest that modulation of attention to sensory signals could be an ancient, conserved function of pdfr-1. Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.


    Jintao Luo, Douglas S Portman. Sex-specific, pdfr-1-dependent modulation of pheromone avoidance by food abundance enables flexibility in C. elegans foraging behavior. Current biology : CB. 2021 Oct 25;31(20):4449-4461.e4

    Expand section icon Mesh Tags

    Expand section icon Substances

    PMID: 34437843

    View Full Text