Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The response surface methodology (RSM) and central composite design (CCD) technique were used to optimize the three key process parameters (i.e., pressure, temperature and holding time) of the high-hydrostatic-pressure (HHP) processing either standalone or combined with moderate thermal processing to modulate molecular structures of β-lactoglobulin (β-Lg) and α-lactalbumin (α-La) with reduced human IgE-reactivity. The RSM model derived for HHP-induced molecular changes of β-Lg determined immunochemically showed that temperature (temp), pressure (p2) and the interaction between temperature and time (t) had statistically significant effects (p < 0.05). The optimal condition defined as minimum (β-Lg specific) IgG-binding derived from the model was 505 MPa at 56 °C with a holding time of 102 min (R2 of 0.81 and p-value of 0.01). The validation carried at the optimal condition and its surrounding region showed that the model to be underestimating the β-Lg structure modification. The molecular change of β-Lg was directly correlated with HHP-induced dimerization in this study, which followed a quadratic equation. The β-Lg dimers also resulted in the undetectable human IgE-binding.

Citation

Xin Sun, Jialing Vivien Chua, Quynh Anh Le, Francisco J Trujillo, Mi-Hwa Oh, Dianne E Campbell, Sam Mehr, Nanju Alice Lee. A Response Surface Methodology (RSM) Approach for Optimizing the Attenuation of Human IgE-Reactivity to β-Lactoglobulin (β-Lg) by Hydrostatic High Pressure Processing. Foods (Basel, Switzerland). 2021 Jul 28;10(8)


PMID: 34441519

View Full Text