Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Cerebral microbleeds (CMBs) are associated with a high risk for stroke . The present study determined whether long-term exposure to PM2.5 results in progressive worsening of CMBs and induction of systemic inflammation and microvascular oxidative stress. Sixteen male Spontaneously hypertensive rats (SHR) and eight Wistar-Kyoto (WKY) rats were exposed to either filtered air or PM2.5 for 12 months. To detect CMBs, rats were imaged using a 7-T MRI. To determine systemic inflammation and oxidative stress, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), as well as reactive oxygen species (ROS), NADPH activity and its subunits p22/47/67phox & gp91phox were measured. During the exposure period, the mean daily concentration of PM2.5 was 59.2 ± 1.0 μg/m3. PM2.5 exposure significantly increased the incidence of CMBs compared to the PM2.5 (-) group (37.5% vs 12.5% incidence rate, p < 0.001). Animals exposed to PM2.5 also had significantly increased systolic blood pressures (SBPs) at 3 months (173 ± 5 vs 157 ± 5 mmHg, p < 0.05), 6 months (218 ± 6 vs 193 ± 7 mmHg, p < 0.01), 9 months (222 ± 6 vs 203 ± 8 mmHg, p < 0.05), and 12 months (231 ± 4 vs 207 ± 5 mmHg, p = 0.01). Additionally, there were significant elevations in IL-6, MCP-1, and TNF-α in the exposed group. Furthermore, PM2.5 significantly increased NOX activity and protein levels of gp91phox and p22/47/67phox. In the SHR model, long-term exposure to PM2.5 worsened CMBs, increased SBPs, induced systemic inflammation and oxidative stress. Therefore, PM2.5 is potentially a controllable risk factor that promotes CMBs in certain patients, such as those with hypertension.


Lipeng Cai, Jianjie Yang, Eric Cosky, Ruiqiang Xin, Xiaokun Geng, Yuchuan Ding. Enhanced Cerebral Microbleeds by Long-Term Air Pollution Exposure in Spontaneously Hypertensive Rats. Neurological research. 2022 Mar;44(3):196-205

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 34461819

View Full Text