Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Accurate and rapid quantitation of cell attachment, spreading, and growth on a polymer thin film coated glass cover slide was developed by analyzing the digital images of cells stained with dyes. A biodegradable block copolymer poly(ethylene glycol)-block-poly(l-lactide-co-2-methyl-2-carboxyl-propylene carbonate) [PEG-b-P(LA-co-MCC)] was synthesized as model polymer with poly(L-lactic acid) [PLLA] as a control polymer. Only a small quantity of polymer (~5 mg) was needed in this method through dissolving in a solvent and casting on cover slides which were previously modified with dimethyl dichlorosilane (DMDC). Then it was seeded with cells and taken pictures with a digital camera under an optical microscope and analyzed with ImageJ software. Cell number and a series of morphological data were obtained, including cell area, circularity, perimeter and Feret's diameter, etc. The quantitative analysis results indicated that cells preferred to attach and spread on the surface of the copolymer PEG-b-P(LA-co-MCC) compared to PLLA during 24 h of cell culture. This efficient procedure provides a series of convincing statistical data to evaluate the direct interaction between cells and polymers with only an optical microscope, a digital camera and ImageJ software. It's a rapid, economic way for assessing cell affinity and compatibility of novel synthetic polymers by cell culture in vitro. Copyright © 2021. Published by Elsevier B.V.

Citation

Zongliang Wang, Yueming Guo, Peibiao Zhang. A rapid quantitation of cell attachment and spreading based on digital image analysis: Application for cell affinity and compatibility assessment of synthetic polymers. Materials science & engineering. C, Materials for biological applications. 2021 Sep;128:112267

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34474826

View Full Text